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Abstract. Previous work by Raup on the mathematical description of coiled shells provides a foundation for the

construction of three-dimensional scale models of cephalopod shells. A computer programme, based on the

method of Raup, has been developed which contours planispiral surfaces of the cephalopod type. The computer
output is then used to construct plastic models of these surfaces. The morphological range covered by this pro-

gramme includes the entire suite of planispiral cephalopod forms. Provision is made for the simulation of both

actual fossil species and hypothetical morphologies. In addition, mathematical simulation of accretionary growth
allows the modelling of different stages of ontogenetic series.

The term ‘scale model’ has been used to describe those models which are physical

reproductions of a prototype. Most scale models are used to adjust the dimensions of the

prototype to a size more readily or accurately studied. Size change is not essential,

however, as scale models with dimensions similar to those of the prototype may be

employed if the prototype itself is unsuitable. Scale models are real, physical objects

and thus differ from mathematical models in that the latter are abstractions. The two are

not exclusive, however, since a scale model may be based upon a mathematical model.

The scale cephalopod models figured in this paper, for example, are true scale models,

but their construction is formulated on Raup’s (1961, 1963, 1966) mathematical model of

shell coiling.

The experimental use of scale models has become a technique of considerable impor-

tance to the physical sciences and engineering. Due primarily to the greater complexity

of the organic world, problems concerning organisms are not yet as amenable to the

scale-model approach as are purely physical phenomena. Our understanding of organic

mechanics and the level of modelling technology are usually inadequate to deal with

the intricate nature of organic mechanisms. Where the requirements for model-building

are reasonable, however, the scale-model technique can be productive.

COMPUTERTECHNIQUEFOR CEPHALOPODSHELLS

It has been known since the work of Moseley (1838, 1842) that the logarithmic spiral

is fundamental to the molluscan shell plan. Not until the work of Raup (1961, 1963,

1966) and Raup and Chamberlain (1967), however, were the cumbersome mathematics

of earlier workers replaced by equations which could be readily applied to actual shells.

According to Raup, the basic form of a spiral shell may be defined by four parameters:

the shape of the generating curve (5); the whorl expansion rate (IT); the distance from

the generating curve to the coiling axis (D); and the translation rate along the coiling

axis (T). These parameters are further defined and the mathematical methodology set

forth in the above papers. Raup (1962) and Raup and Michelson (1965) have demon-

strated the utility of these parameters in the application of both digital and analog

computers to the investigation of shell geometry. The equations used here to simulate

[Palaeontology, Vol. 12, Part 1, 1969, pp. 48-55, pi. 7.]



J. A. CHAMBERLAIN: SCALE MODELLINGOF CEPHALOPODSHELLS 49

cephalopod morphology are based on Raup’s mathematical model and his previous

work with computers.

A computer programme, written in Fortran IV and intended for use in the l.B.M.

S/360 machine, has been developed by the author. This programme yields, as plotter

output, contour maps of planispiral surfaces. These maps are then used in constructing

laminated plastic replicas of planispiral cephalopods. Each lamina is parallel to the

median plane and has a thickness equal to the contour interval. The programme has

been deposited in the reprint files (reprint no. 227) of the Department of Geological

Sciences, University of Rochester, Rochester, N.Y., and is available upon request.

Since cephalopod shells are bilaterally symmetrical, the mathematical reconstruction

of an entire surface is unwarranted; instead this programme considers the median plane

as a base and treats only a single side. Symmetry is restored by duplicating this one half

during the actual construction of the model. The models herein described are thus three-

dimensional reproductions of planispiral surfaces.

text-fig. 1 . Cephalopod sectioned along median plane to show the

fundamental relationships for computer simulation.

While the programme itself is relatively involved, it preserves simplicity in its input

requirements. The user is required to include as input data only three of Raup’s para-

meters (T is zero for planispiral forms and so is excluded here), and the value of a few

constants and logical variables. An orthogonal grid system is assumed in defining the

position of the surface in space (text-fig. 1). The coiling axis lies at the centre of the

system perpendicular to the Z = 0 plane. The aperture has the coordinates of distance

from the coiling axis (A), and distance above the median plane (Z). The shape of the

generating curve is taken as the outline of the aperture above the median plane, and is

defined by a series of points whose (A, Z) coordinates are either directly read in as input,

or calculated from the equations of simple geometric curves whose half axes and dis-

tance to the coiling axis constitute the input data. Other input parameters include the

whorl expansion rate (IF), and the length of the spiral expressed in numbers of whorls.

The computer defines new planes, the number of which depends on the Z coordinate

of the highest point on the aperture. These planes lie above the median plane and parallel
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to it such that a constant interplanar distance is maintained. The Z coordinate of each

aperture point is compared to each plane in turn. If a point lies below a given plane, it is

ignored; if it lies on or above the plane, its intersection with the plane is calculated

from the logarithmic decay of its Z coordinate using the following equations:

Zp ,ane = Zpl . ea S,

e = [ln(Z plane )—ln(Z pt )]/fl. (1)

In the above, which are simply different forms of the equation of a logarithmic spiral,

Zplane is the Z coordinate of the plane and Zpt is the Z coordinate of the aperture

point, e is the base of the natural logarithms. 9 is the angle, expressed in radians, through

which the aperture point must be rotated so that the Z coordinate of the point will be

the same as the Z value of the plane, a is the spiral constant and is equal to cot a, where

a is the spiral angle of Thompson (1942). a may be further expressed as a = InW/lv

or W= e
2 ™, where Wis the whorl expansion rate of Raup. In equation 1, since

Zpt > Zplane and a > 0, 6 will always be negative or zero. The latter case is trivial,

however, as no rotation is involved. Since 9 is thus actually negative, the planispiral

surface is constructed inward from the aperture rather than outward from the first

generating curve, which in molluscs is that portion of the shell immediately adoral to the

protoconch. A negative 9 permits mathematical consideration of the easily measured

aperture, and eliminates the critical drawback, inherent in nearly all previous work, of a

positive 9 requiring a set of equations based on the shape of the minute and often

unavailable first generating curve. The importance of a negative 9 to the mathematical

analysis of real shells has been further demonstrated by Raup and Chamberlain (1967).

Once 9 is known, the X and Y coordinates for Zplane , the new Z coordinate, may be

calculated from the following:

Apiane = Ap t .e
a
0.sin 9 ,

Tp.ane = Apl . e
a9

. COS9,

where ZpIane and Tplane are the new {X, Y) coordinates respectively, and Xpt is the X
coordinate of the undecayed aperture point. Other terminology is as before. The
(A, Y) coordinates of all logarithmically decayed aperture points for a given Z plane

are scaled and fed into a Calcomp plotter which then plots them. A sagittal section

EXPLANATIONOF PLATE 7

Lateral and anterior views of some cephalopod models. Figs. 1-6 show various stages in the assembly

of a model. Figs. 7-12 show three members of a hypothetical ontogenetic series: W= 2 0, D = 0-2.

Figs. 1-2. Specimen of Lytoceras fimbriatum (Sowerby) from which measurements for model in figs.

3-6 were taken. The shell is severed 0-4 whorls from the aperture. x0-3.

Figs. 3-4. Unfinished model showing contoured Plexiglas surface. Reference points for section align-

ment appear near section numbers: 12, 15, 19, 25, 28, in fig. 3. xO-4.

Figs. 5-6. Finished model showing smooth epoxy surface. White portion of umbilical area in this and
other models has no morphological significance, it is used merely as a means of emphasizing surface

relief. xO-4.

Figs. 7-8. Model A, 2-4 whorls, growth increment = —0-6. x04.
Figs. 9-10. Model B, 3 0 whorls, growth increment = 0 0; stage A adapical of line BA. xO-4.

Figs. 11-12. Model C, 3-4 whorls, growth increment = 0-4; stage B adapical of line BC, stage A
adapical of line BA. x 0 4.
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text-fig. 2. Position of various models on a contoured density graph of the natural occurrence of

planispiral ammonoids (adapted from text-fig. 4 of Raup 1967). Contour parameters are Wand D.

90% of sample lies inside outermost contour. Sample size is 405 species. All models but 3, which is the

model of L. fimbriaium, have hypothetical morphologies. All models X0-2.
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lying above the median plane of line a distance of Z
p , ane is thus formed. Moreover, since all

points on a given sagittal section have identical elevations (Z plane ), each plot is actually

a contour line, and the plots for all Z planes form a contour map. Plate 7, figs. 3 and 4,

shows the contoured surface of an unfinished model.

In addition to the mathematical treatment described above, the computer programme
incorporates several operations which provide for the reproduction of most of the varia-

tions observed among cephalopod shells. The simulation of all types of smooth plani-

spiral shells (involute to gyroconic and cyrtoconic) is created by the inclusion of a number
of options for inputting Raup’s parameters to the computer. Among these, the options

for defining aperture shape make possible the modelling of real species or completely

hypothetical and, in terms of real animals, non-existent morphologies. Plate 7, figs. 1-6,

shows a specimen of Lytoceras fimbriatum (Sowerby) and a model constructed from

measurements taken from it. Text-fig. 2 shows several models with hypothetical mor-
phologies.

The wide range in size displayed by coiled cephalopods is accommodated in the

programme by scaling. The size of a model is independent of other input data and
depends only on the operator’s prescribed size instructions. There are thus no restric-

tions on the size of a prototype (where real shells are being copied) except those con-

cerning precision in measurement. Models are limited by the width of the plotter paper

to a maximum diameter of 10 in., although if the computer output is used in conjunc-

tion with a blue-print enlarger this size may be exceeded.

Although scaling accounts for a wide range of variation, it does not duplicate the

accretionary nature of size increase in cephalopods. The ontogenetic development of

the shells of these animals occurs by addition of shell material along the margins of the

aperture; there is no uniform expansion of the entire shell, as is accomplished by scaling.

To alleviate this deficiency, a mathematical simulation of accretionary growth has been

built into the programme and functions when instructed by the operator. Plate 7,

figs. 7-12, shows three members of a hypothetical ontogenetic series produced by making
three computer runs, each time varying the magnitude of the growth increment while

keeping other input data constant.

Although the programme can reproduce, and in some respects exceed, much of the

morphological range of normal cephalopods, it retains certain limitations which prevent

simulation of all cephalopod types. Since its operation is founded on the equation of a

logarithmic spiral, which by definition is a spiral without translation, helicoid forms, such

as those morphologies characterized by non-planispiral heteromorphs, are excluded.

These exceptions do not notably detract from the over-all scope of the programme as the

morphological range of the great majority of fossil species is still reproducible.

While the basic shape of planispiral forms may be simulated, the surface texture and

much of the shell sculpture can not. Except for prominent spiral ornamentation, such as

keels, no ornamentation can be rigorously duplicated. This includes the many kinds of

radial sculpture (e.g. ribs, spines, tubercles) and apertural contrivances (e.g. rostra,

lappets). Ornamentation of this sort is not readily susceptible to objective mathematical

treatment, nor is the precision of the assembly technique adequate to reproduce the

finer sculpture. Sculptured models are not precluded, however, since surface ornamenta-

tion may be added once the smooth surface is finished.

The programme is also not in strict accord with nature in its implicit assumption of
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ontogenetic constancy in the whorl expansion rate and in the shape of the generating

curve. Ontogenetic variation in both of these parameters is well known among cephalo-

pods, especially ammonoids.

The length of time required for a complete computer run depends primarily on the

maximum thickness of a model, since more sagittal sections are required for a thick

model than for a thin one. All models illustrated in this paper consumed less than ten

minutes of computer time, and for most, the average run took about seven minutes.

TECHNIQUEFOR MODELASSEMBLY

The computer sagittal sections are traced on to sheets of clear Plexiglas. The thickness

of the sheets used in the construction of these models is 0-031 in., 0-001 in. less than the

section spacing. Other thicknesses can be handled by the computer, but this one was

considered best for the purpose at hand since it combines precision with practicality.

A second Plexiglas sheet of equal thickness is temporarily glued over those inscribed

with the sections. This allows both model halves to be shaped at once —the reason for the

treatment in the programme of only one symmetrical side. The sections are then

cut out of the double sheets with an electric band-saw and trimmed with a rotary sander.

A model 2 Moto-Tool, manufactured by the Dremel Mfg. Co., Racine, Wisconsin, was

found to be ideal for trimming. The Plexiglas sagittal sections are separated from one

another and divided into two stacks, one for each half of the model. They are then fastened

permanently to one another with a layer of acrylic cement, the thickness of which is

estimated at 0-001 in. When this thickness is added to that of the Plexiglas sheets, the

sum equals the Z spacing defined in the programme. Section alignment and positioning

are controlled by reference points, which are part of the computer output and appear

at the same place (have the same ( X,
Y) coordinates) on all plotted sections and plastic

templates (PI. 7, fig. 3). Distortion due to section displacement is thus minimal. Plate 7,

figs. 3 and 4, shows that at this stage of assembly, models have a contoured surface. In

order to simulate more closely the surface of cephalopod shells, the edges are smoothed

by infilling the steps with plastic resin. The common type of epoxy plastic, Epoxi-Patch

Kit3X, made by the Hysol Chemical Co., Olean, N.Y., was found to be well suited for

this purpose. The steps are filled in rather than sanded down because it is the upper edges

of the templates that lie on the computed surface. When mixed, the epoxy is a viscous

paste that may be easily applied with small spatulas. The model is coated with epoxy

and placed in an oven at 140 °F to 170 °F for two hours, after which the hardened model
is removed and the surface sanded down until the edges of the Plexiglas reappear. If

necessary, a second and third coat is applied, each time removing the excess epoxy,

until a smooth, even surface is produced. Finally the model is painted. The construction

time varies with the size and thickness of the model and with the number of applications

of epoxy. Generally, however, assembly requires 10-20 working hours from the receipt

of the computer output to the finished model.

APPLICATIONS

These cephalopod models illustrate a number of advantageous properties possessed by
scale models of fossil organisms. Perhaps their most significant feature is that they can,

in a sense, act as a substitute for a thorough theoretical or mathematical understanding


